Những câu hỏi liên quan
Mo Salah
Xem chi tiết
Pham Quoc Cuong
30 tháng 5 2018 lúc 10:23

Ta có; \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)

Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\)

                 \(\frac{c^2}{c+a}+\frac{c+a}{4}\ge c\)

Cộng từng vế ta có:

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}+\frac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}=\frac{1}{2}\)

Bình luận (0)
Nguyễn Phương Thảo
Xem chi tiết
Tuna Ngô
Xem chi tiết
Tuna Ngô
29 tháng 3 2022 lúc 21:46

Lời giải

Bất đẳng thức cần chứng minh được viết lại thành

$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 5$

Ta chứng minh bất đẳng thức sau đây

$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$

Thật vậy, bất đẳng thức trên tương đương với

$latex \displaystyle \frac{{{\left( a-1 \right)}^{2}}\left( 2{{a}^{2}}+6a+3 \right)}{3{{a}^{2}}}\ge 0$

Hiển nhiên đúng với a là số thực dương.

Áp dụng tương tự ta được $latex \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{7}{3}-\frac{2b}{3};\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{7}{3}-\frac{2c}{3}$

Cộng theo vế các bất đẳng thức trên ta được

$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 7-\frac{2\left( a+b+c \right)}{3}=5$

Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi $latex a=b=c=1$.

Chúng ta sẽ khởi đầu kỹ thuật này bằng việc đưa ra cách giải thích cho việc tìm ra bất đẳng thức phụ trên và nó cũng chính là cách giải thích cho các bài toán sau này của chúng ta.

Bài toán trên các biến trong cả hai vế và điều kiện đều không ràng buộc nhau điều này khiến ta nghĩ ngay sẽ tách theo từng biến để chứng minh được đơn giản hơn nếu có thể. Nhưng rõ ràng chỉ từng đó thôi là không đủ. Để ý đến dấu đẳng thức xẩy ra nên ta nghĩ đến chứng minh bất đẳng thức sau

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}\Leftrightarrow \frac{\left( a-1 \right)\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}\ge 0$

Tuy nhiên đánh giá trên không hoàn toàn đúng với a thực dương.

Để ý là với cách làm trên ta chưa sử dụng điều kiện .

Như vậy ta sẽ không đi theo đường lối suy nghĩ đơn giản ban đầu nữa mà sẽ đi tìm hệ số để bất đẳng thức sau là đúng

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+ma+n\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)$

Trong đó m và n là các hệ số chưa xác định.

Thiết lập tương tự với các biến b và c ta được

$latex \displaystyle \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{5}{3}+mb+n;\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{5}{3}+mc+n$

Cộng theo vế các bất đẳng thức trên ta có

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}}{3}\ge 5+m\left( a+b+c \right)+3n=5+3\left( m+n \right)$

Như vậy ở đây 2 hệ số m và n phải thỏa mãn điều kiện $latex \displaystyle m+n=0\Leftrightarrow n=-m$. Thế vào (1) dẫn đến

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)$

Đến đây ta chỉ cần xác định hệ số duy nhất là m để bất đẳng thức (2) là đúng. Chú ý đẳng thức xẩy ra tại $latex a=b=c=1$ nên ta cần xác định m sao cho

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\Leftrightarrow \left( a-1 \right)\left( \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}-m \right)\ge 0$

Khi cho $latex a=1$ thì ta có $latex \displaystyle \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}=-\frac{2}{3}$ từ đó ta dự đoán rằng $latex \displaystyle m=-\frac{2}{3}$ để tạo thành đại lượng bình phương $latex {{\left( a-1 \right)}^{2}}$ trong biểu thức. Từ đó ta sẽ chứng minh bất đẳng thức phụ

$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$

Bình luận (3)
trần xuân quyến
Xem chi tiết
Nguyễn Tất Đạt
19 tháng 12 2018 lúc 13:26

Áp dụng BĐT AM-GM: \(1+b^2\ge2b\)

\(\Rightarrow\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng vế với vế 3 BĐT trên ta được:  \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)

Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\) 

Nên \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{\left(a+b+c\right)^2}{6}=3-\frac{9}{6}=\frac{3}{2}\)(đpcm).

Dấu "=" xảy ra <=> a=b=c=1.

Bình luận (0)
Hoàng Thị Thúy
Xem chi tiết
Duy Phúc
2 tháng 12 2017 lúc 12:52

\(\sqrt[4]{b^3}\)

Bình luận (0)
Tran Le Khanh Linh
3 tháng 5 2020 lúc 9:59

Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

Do đó

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)

\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)

\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 9 2021 lúc 20:27

ơ đang chờ mấy bạn top bxh vô trả lời mà hỏng thấy đou

hộ mình với:(

Bình luận (0)
 Khách vãng lai đã xóa
laala manaka
11 tháng 9 2021 lúc 20:29

= mìnk ko biết

sorry

Bình luận (0)
 Khách vãng lai đã xóa
Đỗ Đức Đạt
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
6 tháng 4 2021 lúc 13:56

Ta có : \(\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2}=\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel và giả thiết a2 + b2 + c2 = 3abc ta có :

\(\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{\left(3abc\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{9}{a+b+c}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
ミ★Zero ❄ ( Hoàng Nhật )
Xem chi tiết
Hỏi Làm Gì
Xem chi tiết
MARKTUAN
7 tháng 9 2016 lúc 19:49

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

Bình luận (0)
Hỏi Làm Gì
7 tháng 9 2016 lúc 20:44

Bạn nói rõ hơn được không???

Bình luận (0)
alibaba nguyễn
7 tháng 9 2016 lúc 21:25

Để chừng nào t làm được câu 1 thì t giải giúp cho 1 lần luôn

Bình luận (0)